doi: 10.56294/ere202358
ORIGINAL
Considerations for the calculation of the water quality risk Index according to current sanitary and epidemiological trends
Consideraciones para el cálculo del índice de riesgo de calidad del agua según las tendencias actuales sanitarias y epidemiológicas
José Luis Guataquira Rincón1, René Ricardo Cuéllar Rodríguez1
1Corporación Universitaria Del Meta, Facultad de Ingeniería Ambiental. Villavicencio – Meta, Colombia.
Cite as: Guataquira Rincón JL, Cuéllar Rodríguez RR. Considerations for the calculation of the Water Quality Risk Index according to current sanitary and epidemiological trends. Environmental Research and Ecotoxicity. 2023; 2:58. https://doi.org/10.56294/ere202358
Submitted: 10-09-2022 Revised: 28-01-2023 Accepted: 12-05-2023 Published: 13-05-2023
Editor: Prof.
Dr. William Castillo-González
ABSTRACT
The prevalence of occasional epidemics associated with waterborne diseases, the presence of chemical contaminants (organic, inorganic, and heavy metals) in bodies that supply water for human consumption due to different anthropogenic activities of an industrial, agricultural, livestock, and care type. human. These contaminants have accumulated until they can be detected by current procedures and equipment, as well as to reach concentrations that can generate diseases. In this sense, the Water Quality Risk Index (IRCA) established by Resolution 2115 of 2007 proposes admissible parameters for drinking water of a microbiological, physical, and chemical nature, parameters that need to be reviewed to update the water monitoring instrument. drinking water supplied to the population. The different water quality indices are compared with respect to the number and frequency of criterion parameters, the reference values, and the methods for calculating the indices for common parameters. Likewise, the inclusion of other parameters associated with emerging contaminants associated with pesticides and microbial agents is analyzed. As a consequence of the investigation, parameters to be included are proposed, such as fecal coliforms, somatic coliphages, V Hepatitis A, OD, BOD, Cd, As, Hg, Pb, Zn, Cu and pesticides for which values have already been described admissible.
Keywords: Water Quality Indices; Emerging Contaminants.
RESUMEN
La prevalencia de epidemias ocasionales asociados a enfermedades transportadas por el agua, la presencia de contaminantes químicos (orgánicos, inorgánicos y metales pesados) en los cuerpos abastecedores de agua para consumo humano por diferentes actividades antrópicas de tipo industrial, agrícolas, pecuarias, y del cuidado humano. Dichos contaminantes, se han acumulado hasta poderse detectar por los procedimientos y quipos actuales, así como para alcanzar concentraciones que pueden generar enfermedades. En este sentido el índice de Riesgo de Calidad del Agua (IRCA) establecido por la Resolución 2115 del 2007 propone unos parámetros admisibles para el agua potable de tipo microbiológico, físico y químico, parámetros que es necesario revisar para actualizar el instrumento de seguimiento al agua potable suministrada a la población. Se comparan los distintos índices de calidad del agua respecto al número y frecuencia de parámetros criterio, los valores de referencia, y los métodos cálculo de los índices para los parámetros comunes. Asi mismo se analiza la inclusión de otros parámetros asociados a contaminantes emergentes asociados a plaguicidas y agentes microbianos. Como consecuencia de la indagación se propone parámetros a incluir como lo son los coliformes fecales, colifagos somáticos, V Hepatitis A, OD, DBO, Cd, As, Hg, Pb, Zn, Cu y los plaguicidas para los cuales ya se han descrito valores admisibles.
Palabras clave: Índices de Calidad del Agua; Contaminantes Emergentes.
INTRODUCTION
Water quality is essential for ensuring public health, preserving ecosystems, and promoting sustainable societal development. Various methodologies have been developed to assess this resource by creating water quality indices (WQIs) that synthesize complex information into understandable indicators for decision-making. In Colombia, one of the most widely used instruments is the Water Quality Risk Index for Human Consumption (IRCA), which seeks to establish the level of health risk of the water supplied to the population.(1,2,3,4,5,6,7,8)
However, despite being a widely implemented tool in the country, the IRCA has been subject to critical analysis compared to other international indices that integrate more parameters and evaluation criteria.(9,10,11,12) Some of these indices, such as the National Sanitation Foundation’s WQI (WQINSF), the Dinius index, the ICAUCA, the UWQI, the ISCA, the IAP, and the AMOEBA index, have served as benchmarks for comparing approaches to water quality measurement from both quantitative and qualitative perspectives.(13,14,15,16) These indicators typically consider microbiological, physical, chemical (inorganic and organic), pesticide, and, in some cases, radioactive variables, with weightings and value ranges established by international organizations such as the World Health Organization (WHO), the US Environmental Protection Agency (EPA), the European Union, and Japan.(17,18,19,20)
This study provides a detailed review of the IRCA compared to the abovementioned indices and international standards, evaluating the presence or absence of specific parameters, the reference values adopted, and their relevance in the Colombian context.(21,22,23,24,25) Similarly, the relevance of including emerging contaminants, waterborne diseases, and pathogens not currently covered by the IRCA is examined. Identifying gaps, limitations, or possible improvements in this index is key to strengthening public health policies and optimizing drinking water quality monitoring systems.(26,27,28,29,30,31,32)
Within this framework, this paper proposes a technical evaluation of the IRCA, highlighting the fundamental elements that should be reviewed or incorporated to ensure a better approximation of health risk and greater alignment with the most up-to-date international standards.(33,34,35)
Objective
To propose parameters and weightings that should be considered in the calculation of the Water Quality Risk Index according to current health and epidemiological trends.
METHOD
Comparison of water quality indices
The IRCA was compared with different water quality indices and international quality standards in a qualitative and quantitative manner. It was examined which parameters are most frequently analyzed with water quality indicators and which ones are considered according to international standards, thus identifying the relevance of the parameters and trends in water quality.
Qualitative comparison
The IRCA will be compared with the WQINSF, Dinius, ICAUCA, DWQIUWQI, ISCA, IAP, IRCA, and AMOEBA indices by comparing the physical, chemical, and biological parameters they consider through an analysis of the number of parameters per index and their frequency among the different indices.
Likewise, the reference values used for the IRCA calculation will be compared with the WQINSF, Dinius, ICAUCA, DWQIUWQI, ISCA, IAP, IRCA, and AMOEBA indices using maximum values or ranges according to the parameter.
Likewise, the IRCA is compared with the water quality standards described in the documents Harmonization of Drinking Water Standards in the Americas (World Health Organization - WHO, 2005), Environmental Water Quality Criteria for Human Health (United States Environmental Protection Agency - EPA 2015), Water Supply Law (Japan, 2013) and Directive 2020/2184/EC on the quality and measurement methods, sampling frequency and analysis of surface water intended for the production of drinking water (European Community 2020).
Quantitative comparison
The standard parameters of the WQINSF, Dinius, ICAUCA, DWQI, UWQI, ISCA, IAP, and AMOEBA indices are based on the IRCA’s reference values (the value of the standardized variable and its weighting), calculated according to their system, and compared with those of the IRCA.
Assessment of waterborne diseases based on the National Health Institute report for consideration as IRCA parameters
Taking into account the 2022 National Water Report, the etiological agents causing diseases related to acute diarrheal diseases are determined and compared with the IRCA parameters.
Analysis of possible emerging contaminants according to the CAS list for consideration as IRCA parameters.
The CAS list of chemical compounds, polymers, biological sequences, preparations, and alloys was reviewed.
RESULTS
Comparison of water quality indices
The different ACIs monitor biological, physical, and chemical parameters, the latter of which can be classified as inorganic or organic and, additionally, according to their origin as pesticides or radioactive, among others.
Qualitative comparison – Frequency and quantity of biological parameters analyzed by water quality indices
Table 1. Biological parameters analyzed by quality indices |
||||||||||
Parameter |
WQI NSF |
Dinius |
ICAUCA |
DWQI |
UWQI |
ISCA |
IAP |
IRCA |
AMOEBA |
f |
Total coliforms |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
3 |
Fecal coliforms |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
5 |
Escherichia coli |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
Cryptosporidium |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
Giardia |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
Microcystin |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
Total |
1 |
2 |
1 |
0 |
1 |
0 |
1 |
4 |
1 |
|
In this sense, coliforms are a group of gram-negative, rod-shaped, non-spore-forming bacterial species that can ferment lactose with acid and gas production when incubated at 35–37 °C, and are used as indicators of water and food contamination; however, not all coliforms are of fecal origin.(36,37,38,39,40) Given the above, this group includes fecal coliforms (those of intestinal origin), defined as Gram-negative, non-spore-forming bacilli that ferment lactose with acid and gas production at 44,5 °C +/− 0,2 °C within 24 +/− 2 hours. This group includes different genera such as Escherichia, Citrobacter, Klebsiella, and Enterobacter.(41,42,43,44,45,46,47,48) Finally, E. coli is the most predominant species of fecal coliforms and is associated with 99 % of cases of fecal contamination. Likewise, enteropathogenic E. coli are causal agents of acute diarrheal disease (ADD), ranging from severe diarrhea to bloody diarrhea.(49,50,51,52,53,54,55)
Therefore, the prevalence of fecal coliforms as a monitoring parameter is given because it is more specific for determining the contamination of water bodies by fecal matter. The choice of E. coli would be more specific due to its direct relationship with fecal contamination and the development of ADF. However, its determination must be more specific within the procedures and therefore more complex.
The IRCA monitors total coliforms and E. coli, thus providing a general and specific analysis of possible water contamination, especially by fecal matter. The closest index in this analysis is the Dinius index, which analyzes total and fecal coliforms. It provides a general and specific analysis of water contamination from fecal sources, as it explicitly covers other bacteria associated with gastrointestinal diseases.
Finally, the IRCA considers two parasites: Giardia lamblia, intestinalis, or duodenalis (a flagellated protozoan that resides in the small intestine of mammals and causes diarrhea and anorexia)(56) and Cryptosporidium parvum, hominis, canis, felis, melagredis, muris (a protist that causes chronic diarrhea and malnutrition); both parasites are indicators of water contamination by fecal matter. These cases are considered due to the prevalence of these diseases.
Qualitative comparison - Frequency and quantity of physical parameters analyzed by water quality indices
Physical parameters are associated with water’s organoleptic characteristics, and their presence indicates untreated water or water that is unsuitable for human consumption.
In this sense, temperature is one of the least used parameters since it can vary due to discharges of water with a temperature higher than the ambient temperature, be associated with seasonal temperature changes (hot or cold seasons), or be water of thermal origin.
Turbidity and color are parameters associated with the content of suspended material due to the force of the water and dissolved substances due to the hydrological cycle through entrainment and dilution processes. Additionally, dissolved substances lead to increased conductivity. However, these parameters are also affected by increasing pollution.
The above parameters are related to the organoleptic characteristics of colorless water, which allows light to pass through it. In this way, the parameters are analyzed according to ICA standards to ensure that the water is treated or meets the desired characteristics for human consumption. Given the above, turbidity is the second parameter to be checked due to its ease of measurement in the field. However, the set of parameters for color, suspended solids, dissolved solids, and conductivity accompany the determination of turbidity for most ICAs (table 2).
Dissolved oxygen is an indicator of the eutrophication status of water, where oxygen-deficient waters are associated with microbial growth due to high organic matter content and sources of nitrogen and phosphorus that consume oxygen in their metabolic and lentic processes. Conversely, water with a high percentage of dissolved oxygen indicates fresh, lotic water with low pollution that does not give rise to large microbial populations. In this sense, oxygen is the primary physical parameter to be checked by the various ICAs, table 2.
Table 2. Physical parameters analyzed by quality indices |
||||||||||
Parameter |
WQI NSF |
Dinius |
ICAUCA |
DWQI |
UWQI |
ISCA |
IAP |
IRCA |
AMOEBA |
f |
Temperature |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
4 |
Dissolved oxygen |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
8 |
Turbidity |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
6 |
Color |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
3 |
Suspended solids |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
3 |
Dissolved solids |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
4 |
Conductivity |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
4 |
Total |
4 |
4 |
5 |
0 |
1 |
3 |
6 |
2 |
4 |
|
Qualitative comparison - Frequency and quantity of inorganic chemical parameters analyzed by water quality indices
The indices that consider the most significant number of inorganic chemical parameters to be monitored are DWQI, IRCA, AMOEBA, and IAP, with 18, 17, 16, and 14 parameters, respectively. The indices that include the fewest parameters in their analysis are ISCA, INCAUCA, WQINSF, and Dinius, with 0,3, 3, and 5 parameters, respectively (table 3).(58)
The parameter most frequently analyzed by the indicators is pH (table 3). Overly acidic water dissolves heavy metals (lead, copper, zinc) that, when ingested, negatively affect health. In addition, extreme pH values cause irritation of the mucous membranes and internal organs and even ulceration processes.(58)
Furthermore, nitrate is the second most analyzed parameter (table 3) since nitrite (NO2-) generally converts easily to nitrate (NO3-), which means that nitrite is rarely present in water. In this sense, nitrate is essential for plant growth, used as a fertilizer, and produced industrially in large quantities. This leads to two forms of water pollution by nitrogen compounds: point source pollution due to the livestock, industrial, or urban sectors (organic effluents from livestock activities, industrial discharges, urban wastewater), while dispersed or diffuse pollution is only due to agricultural activity.(59)
Likewise, the total phosphorus parameter is among those most analyzed (table 3). This is because the phosphate ion (PO4-) is formed from inorganic phosphorus as part of the cycle of this element in the environment and is considered a plant macronutrient. Water bodies close to agricultural soils have different amounts of phosphates contributed by runoff and infiltration of rainwater or irrigation water.(59)
Arsenic, cadmium, chromium, mercury, lead, zinc, and copper are also among the most analyzed heavy metals (table 3). These metals are toxic in low concentrations and chronically affect human health through bioaccumulation processes. Water bodies are polluted by discharges from mining, industrial, and urban activities.(60)
In addition, the most analyzed parameters include those related to fluorine (table 3), a highly reactive halogen that forms inorganic and organic compounds called fluorides. When ingested orally, fluorides have adverse health effects (reproduction, osteosarcoma, hypothyroidism, and neurotoxicity). However, this chemical enters the water supply through the fluoridation of public water supplies.(61)
Finally, among the most frequently analyzed parameters are chlorides (table 3), which are found in water as calcium or magnesium salts, and high chloride content can cause corrosion in metal pipes and structures.(58)
Table 3. Inorganic chemical parameters analyzed by quality indices |
||||||||||
Parameter |
WQI NSF |
Dinius |
ICAUCA |
DWQI |
UWQI |
ISCA |
IAP |
IRCA |
AMOEBA |
f |
pH |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
8 |
Fats and oils |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
Total nitrogen |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
3 |
Ammonia |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
2 |
Nitrites |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
3 |
Nitrates |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
7 |
Total phosphorus |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
4 |
Phosphates |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
2 |
Sulfates |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
2 |
Chlorine |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
Chlorides |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
3 |
Fluoride |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
3 |
Cyanide |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
Cyanide |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
Calcium |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
Alkalinity |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
2 |
Hardness |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
2 |
Arsenic |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
3 |
Cadmium |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
4 |
Chromium |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
3 |
Mercury |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
4 |
Molybdenum |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
Nickel |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
2 |
Lead |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
3 |
Zinc Zn |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
3 |
Boron |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
Aluminum |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
Copper |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
3 |
Iron |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
3 |
Aluminum |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
Manganese |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
3 |
Magnesium |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
Sodium |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
Selenium |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
Total |
3 |
5 |
3 |
18 |
9 |
0 |
14 |
17 |
16 |
|
Qualitative comparison - Frequency and quantity of organic chemical parameters analyzed by water quality indices
The main organic chemical parameter analyzed is biochemical oxygen demand (BOD) (table 4), which allows us to check whether there is organic matter that can be microbiologically degraded. This is because TOC is the most direct parameter for assessing organic load (carbon), although it cannot estimate oxygen consumption directly. Chemical oxygen demand (COD) determines the oxygen consumption in the digestion of organic matter. However, nitrites, sulfites, and ferrous ions also react with the reagents (dichromate) and will be recorded as oxygen consumption by organic matter.(62)
In addition, other parameters associated with organic substances that are water pollutants, such as polyaromatic hydrocarbons (PAHs), trihalomethanes (THMs), polychlorinated biphenyls (PCBs), and phenols, are monitored at a low frequency despite their environmental and public health importance (table 4).
Table 4. Organic chemical parameters analyzed by quality indices |
||||||||||
Parameter |
WQI NSF |
Dinius |
ICAUCA |
DWQI |
UWQI |
ISCA |
IAP |
IRCA |
AMOEBA |
f |
COT |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
2 |
DQO |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
2 |
DBO |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
7 |
HPA |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
THM |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
PCBs |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
Fenol |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
Total |
1 |
1 |
1 |
0 |
1 |
2 |
2 |
1 |
5 |
|
Qualitative comparison - Frequency and quantity of parameters associated with pesticides analyzed by water quality indices
Pesticide monitoring is rarely considered as a parameter and is only provided by the IRCA and AMOEBA indices, despite its importance for public health. However, the issue of pesticides for the IRCA is assessed as a group of substances, table 5.
Table 5. Parameters associated with pesticides analyzed by quality indices |
||||||||||
Parameter |
WQI NSF |
Dinius |
ICAUCA |
DWQI |
UWQI |
ISCA |
IAP |
IRCA |
AMOEBA |
f |
Pesticides |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
Organophosphate pesticides |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
Total |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
|
Qualitative comparison – Reference values for the parameters used in the water quality index (IRCA) and international standards
Below is a comparative analysis of the values of the microbiological, physical, chemical (organic and inorganic), pesticide, and radioactive parameters indicated by the WHO, Europe, EPA-USA, and Japan concerning the IRCA.
Permissible limits for microbiological parameters
It can be seen that for most standards (IRCA, WHO, Europe, and EPA-USA), E. coli is taken as the most stringent parameter for verifying contamination by fecal matter. However, most standards, except Japan, consider two indicators to broaden the spectrum of risk analysis to bacteria that can cause diarrheal diseases. This case presents studies of E. coli and fecal coliforms or E. coli and total coliforms table 6.
Only the US EPA proposes Cryptosporidium and Giardia as health and epidemiological monitoring parameters, as they are associated with parasitic diseases transmitted by water and fecal contamination (table 6). Due to their outbreaks, they are also standards for controlling protozoa of medium importance, and Colombia has a prevalence of 10,6 %.(63)
The IRCA does not consider the determination of Clostridium as a water quality parameter, even though EPA standards do (table 6). However, Clostridium perfringens is usually found in soil and wastewater and is part of the intestinal microflora of humans and animals. For this reason, it is a parameter that indicates whether there is fecal contamination of water, addresses the presence of pathogenic microorganisms whose determination is costly and complex, and shows the efficiency of water filtration and disinfection processes. This microorganism is the causative agent of human diseases such as foodborne gastroenteritis and gas gangrene. Based on the quality criteria proposed by the EPA in its 2015 update, studies have been conducted to standardize the procedures for its determination by ISO 14189:2013 and those outlined in the Colombian Technical Guide, GTC 84 of 2003.(64)
In addition, the IRCA does not consider Legionella determination as a water quality parameter, even though EPA standards do (table 6). However, Legionella pneumophila is associated with outbreaks related to poorly maintained artificial water systems (cooling towers or evaporative condensers used for air conditioning and industrial refrigeration systems, hot and cold water systems in public and private buildings, and recreational facilities). L. pneumophila is the causative agent of a type of pneumonia called Legionnaires’ disease.(65)
In addition, the IRCA omits microcystins as a water quality parameter in its monitoring parameters, even though WHO and European standards do (table 6). Microcystins are toxins produced by different species of blue-green algae (cyanobacteria of the genera Microcystis, Anabaena, Oscillatoria, and Nostoc) that grow abnormally in surface waters, causing poisoning in both animals and humans.(66) However, the prevalence of microcystins has not been reported in the epidemiological reports of the National Institute of Health.
Finally, the IRCA does not include microcystins as a water quality parameter in its monitoring parameters despite the fact that EPA standards take them into account (table 6). Somatic coliphages indicate raw water contamination by human or animal feces or wastewater and the inadequacy of treated water disinfection systems. They are also associated with an increased incidence of non-bacterial diarrhea.(67)
Table 6. Reference values for microbiological parameters |
||||||
Parameter |
Unit |
IRCA |
WHO |
EUROPE |
EPA - United States |
Japan |
Drinking water risk index |
Harmonization of drinking water standards in the Americas 2005 |
Directive 2020/2184/EC 2020 |
Environmental water quality criteria for human health: 2015 |
Water Supply Act 2013 |
||
Total coliforms |
UFC/100mL |
0 |
ne |
0 |
<5 % samples + /month |
0 |
Fecal coliforms |
UFC/100mL |
ne |
1 |
ne |
1 |
Ne |
Intestinal enterococci |
UFC/100mL |
ne |
ne |
0 |
ne |
Ne |
Escherichia coli |
UFC/100mL |
0 |
0 |
0 |
1 |
Ne |
Legionella |
UFC/100mL |
ne |
ne |
ne |
1 |
Ne |
Clostridium perfringens |
UFC/100mL |
ne |
ne |
ne |
1 |
Ne |
Cryptosporidium |
Oocysts |
0 |
ne |
ne |
99 % elimination |
Ne |
Giardia |
Cysts |
0 |
ne |
ne |
99 % elimination |
Ne |
Microcystin |
ug/L |
ne |
1 |
1 |
ne |
Ne |
Somatic coliphages |
|
ne |
ne |
ne |
1 |
Ne |
Permissible limits for physical parameters
Regarding physical standards, it was found that turbidity, the IRCA parameter, is less demanding by 1 NTU compared to the EPA and Japanese standards, and color is by the EPA. Still, some regulations, such as those in Japan, require 10 platinum cobalt units less. Total dissolved solids do not have a specified value in the IRCA, although EPA and Japanese standards require up to 500 mg/L. Conductivity is more restrictive for the IRCA, with a 1000 uS/cm value, compared to the European standard of 2500 uS/cm. Odor and taste determinations for the IRCA are based on the assessment of acceptability concerning the EPA’s threshold value of 3 odor units and three odor intensity units table 7.
In this regard, the IRCA determines total dissolved solids based on conductivity, which is more restrictive than national standards. However, the parameters for turbidity and color may be more stringent, assuming the values of the EPA and Japanese standards.
Table 7. Reference values for physical parameters |
||||||
Parameter |
Unit |
IRCA |
WHO |
EUROPE |
EPA - United States |
Japan |
Drinking water risk index |
Harmonization of drinking water standards in the Americas 2005 |
Directive 2020/2184/EC 2020 |
Environmental water quality criteria for human health: 2015 |
Water Supply Act 2013 |
||
Turbidity |
NTU |
2 |
ne |
ne |
< 1 NTU daily measurements <0,3 NTU 95 % of daily measurements during the month |
1 |
Color |
UPC |
15 |
ne |
ne |
15 |
5 |
Total dissolved solids |
mg/L |
ne |
ne |
ne |
500 |
500 |
Conductivity |
uS/cm |
1000 |
ne |
2500 |
ne |
Ne |
Odor |
TON |
acceptable |
ne |
ne |
3 |
3 |
Taste |
TIO |
acceptable |
ne |
ne |
3 |
ne |
Permissible limits for inorganic chemical parameters
The IRCA’s lower pH limit (pH=6,5) is aligned with European and EPA standards. However, the upper pH limit (pH=9) is less restrictive than the EPA standard (pH=8,5) but is in line with European values (pH=9,5), table 8.
According to IRCA permissible values, the parameters for detergents, bromate, silver, beryllium, boron, aluminum chlorate, thallium, and sodium are not considered, even though there are maximum permissible values according to international standards. Likewise, the allowable limits for cyanide, fluoride, mercury, nickel, zinc, antimony, iron, and manganese should be reviewed, as international standards propose more restrictive values (table 8).
According to the IRCA, the standard for free residual chlorine is higher (free residual chlorine = 5 mg/L) than international standards (free residual chlorine = 1–4 mg/L). However, this value is not harmful to health and helps to ensure the disinfection of treated water during transport, table 8.
Table 8. Reference values for inorganic chemical parameters |
||||||
Parameter |
Unit |
IRCA |
WHO |
EUROPE |
EPA - United States |
Japan |
Drinking water risk index |
Harmonization of drinking water standards in the Americas 2005 |
Directive 2020/2184/EC 2020 |
Environmental water quality criteria for human health: 2015 |
Water Supply Act 2013 |
||
pH |
|
6,5-9 |
ne |
6,5 - 9,5 |
6,5 - 8,5 |
Aprox7,5 |
Detergents |
mg/L |
ne |
ne |
ne |
0,5 |
0,2 |
Ammonia |
mg/L |
ne |
1,5 |
0,5 |
ne |
ne |
Nitrites |
mg/L |
0,1 |
3 |
0,5 |
ne |
ne |
Nitrates |
mg/L |
10 |
50 |
50 |
10 |
10 |
Phosphates |
mg/L |
0,5 |
ne |
ne |
ne |
ne |
Sulfates |
mg/L |
250 |
ne |
250 |
250 |
ne |
Free residual chlorine |
mg/L |
ne |
5 |
ne |
4 |
1 |
Chlorides |
mg/L |
250 |
ne |
250 |
250 |
250 |
Fluoride |
mg/L |
1 |
1,5 |
1,5 |
4 |
0,8 |
Bromate |
mg/L |
ne |
0,01 |
0,01 |
0,01 |
ne |
Cyanide |
mg/L |
0,05 |
ne |
0,05 |
0,2 |
0,01 |
Calcium |
mg/L |
60 |
ne |
ne |
ne |
10-100 |
Alkalinity |
mg/L |
200 |
ne |
ne |
ne |
ne |
Hardness |
mg/L |
300 |
ne |
ne |
ne |
300 |
Arsenic |
mg/L |
0,01 |
0,01 |
0,01 |
0,05 |
0,01 |
Cadmium |
mg/L |
0,003 |
0,003 |
0,005 |
0,005 |
0,01 |
Chromium |
mg/L |
0,05 |
0,05 |
0,05 |
0,1 |
0,05 |
Mercury |
mg/L |
0,001 |
0,006 |
0,001 |
0,002 |
0,0005 |
Magnesium |
mg/L |
36 |
ne |
ne |
ne |
10-100 |
Molybdenum |
mg/L |
0,07 |
ne |
ne |
ne |
0,07 |
Nickel |
mg/L |
0,02 |
0,07 |
0,02 |
ne |
0,01 |
Silver |
mg/L |
ne |
ne |
ne |
0,01 |
ne |
Lead |
mg/L |
0,01 |
0,01 |
0,01 |
ne |
ne |
Zinc |
mg/L |
3 |
ne |
ne |
5 |
1 |
Antimony |
mg/L |
0,02 |
0,02 |
0,05 |
0,006 |
0,02 |
Barium |
mg/L |
0,7 |
1,3 |
ne |
2 |
ne |
Beryllium |
mg/L |
ne |
ne |
ne |
0,004 |
ne |
Boron |
mg/L |
ne |
2,4 |
1 |
1 |
1 |
Aluminum |
mg/L |
0,2 |
ne |
ne |
ne |
ne |
Chlorate |
mg/L |
ne |
0,7 |
ne |
ne |
ne |
Copper |
mg/L |
1 |
2 |
2 |
1,3 |
1 |
Iron |
mg/L |
0,3 |
ne |
0,2 |
0,3 |
0,3 |
Aluminum |
mg/L |
ne |
0,2 |
0,2 |
0,05-0,2 |
0,1 |
Manganese |
mg/L |
0,1 |
0,1 |
ne |
0,05 |
0,05 |
Thallium |
mg/L |
ne |
ne |
ne |
0,002 |
ne |
Sodium |
mg/L |
ne |
ne |
200 |
ne |
200 |
Selenium |
mg/L |
0,01 |
0,04 |
0,01 |
0,05 |
0,01 |
Permissible limits for organic chemical parameters
For the IRCA, it is worth noting the usefulness of using TOC as a parameter for monitoring organic matter, even though international standards do not suggest this (table 9). However, it should be accompanied by the determination of COD or BOD, preferably the latter, to see the relationship between dissolved oxygen, microbial load, and organic matter.
The acceptable value for THM in the IRCA (THM = 0,2 mg/L) needs to be reviewed, as international standards have more restrictive values (THM = 0,08 to 0,1 mg/L).
However (29) organic compounds for which international standards have already reported permissible limits. However, the IRCA has not set a maximum permitted value for each. Nevertheless, the IRCA indicates that a maximum acceptable value of 0,0001 mg/L,(41) should be assumed for the following chemical characteristics: i) chemicals recognized by the Ministry of Social Protection as carcinogenic, mutagenic, and teratogenic; ii) chemical substances with a recognized minimum oral LD50 value of less than or equal to 20 mg/kg, iii) substances classified as extremely or highly hazardous by the Ministry of Social Protection, iv) chemical substances of natural or synthetic origin for which it is considered necessary to apply precautionary standards, in the sense that, despite not having sufficient scientific information, table 9.
Table 9. Reference values for organic chemical parameters |
||||||
Parameter |
Unit |
IRCA |
WHO |
EUROPE |
EPA - United States |
Japan |
Drinking water risk index |
Harmonization of drinking water standards in the Americas 2005 |
Directive 2020/2184/EC 2020 |
Environmental water quality criteria for human health: 2015 |
Water Supply Act 2013 |
||
COT |
mg/L |
5 |
ne |
ne |
ne |
ne |
HAP |
mg/L |
0,01 |
ne |
ne |
ne |
ne |
THM |
mg/L |
0,2 |
ne |
0,1 |
0,08 |
0,1 |
PCBs |
mg/L |
0,0001* |
ne |
ne |
0,0005 |
ne |
Dioxinas |
mg/L |
0,0001* |
ne |
ne |
0,00000003 |
1 |
AHA |
mg/L |
0,0001* |
ne |
ne |
0,06 |
ne |
Fenol |
mg/L |
0,0001* |
ne |
ne |
ne |
0,005 |
Benceno |
mg/L |
0,0001* |
0,01 |
0,001 |
0,005 |
0,01 |
Bromoformo |
mg/L |
0,0001* |
0,1 |
ne |
ne |
0,09 |
Diclorobenceno |
mg/L |
0,0001* |
1 |
ne |
0,075 |
0,3 |
Triclorobenceno |
mg/L |
0,0001* |
ne |
ne |
0,07 |
ne |
Benzo (a) pireno |
mg/L |
0,0001* |
0,0007 |
0,00001 |
0,0002 |
ne |
dibromoclorometano |
mg/L |
0,0001* |
0,1 |
ne |
ne |
0,1 |
bromodiclorometano |
mg/L |
0,0001* |
0,02 |
ne |
ne |
0,03 |
diclorometano |
mg/L |
0,0001* |
0,02 |
ne |
0,005 |
0,02 |
cloroformo |
mg/L |
0,0001* |
0,3 |
ne |
ne |
0,06 |
dicloroacetonitrilo |
mg/L |
0,0001* |
0,02 |
ne |
ne |
0,01 |
1,2 dicloroetano |
mg/L |
0,0001* |
0,03 |
0,003 |
0,005 |
0,004 |
Formaldehido |
mg/L |
0,0001* |
ne |
ne |
ne |
0,08 |
Tetracloruro de carbono |
mg/L |
0,0001* |
0,004 |
ne |
0,005 |
0,002 |
Tetracloroeteno |
mg/L |
0,0001* |
0,04 |
0,01 |
0,005 |
0,01 |
Tricloroeteno |
mg/L |
0,0001* |
0,02 |
0,01 |
0,005 |
0,3 |
Tolueno |
mg/L |
0,0001* |
0,7 |
ne |
1 |
0,4 |
Xylene |
mg/L |
0,0001* |
0,5 |
ne |
10 |
0,4 |
Vinyl chloride |
mg/L |
0,0001* |
0,0003 |
0,0005 |
0,002 |
ne |
Ethylbenzene |
mg/L |
0,0001* |
0,3 |
ne |
0,7 |
ne |
Styrene |
mg/L |
0,0001* |
0,02 |
ne |
0,1 |
ne |
Monochlorobenzene |
mg/L |
0,0001* |
ne |
ne |
0,1 |
ne |
Epoxy resin |
mg/L |
0,0001* |
0,0004 |
0,0001 |
ne |
ne |
Hexachlorobutadiene |
mg/L |
0,0001* |
0,0006 |
ne |
ne |
ne |
Ethylene diamine tetra acetic acid |
mg/L |
0,0001* |
0,6 |
ne |
ne |
ne |
Acrylamide |
mg/L |
0,0001* |
0,0005 |
0,0001 |
ne |
ne |
Permissible limits for radioactive chemical parameters
The IRCA does not assume monitoring values for radioactive substances despite the standards indicating this (table 10). However, there would be no need to establish permissible values for these parameters since the activities carried out in Colombian territory do not involve the generation of such pollutants.
Table 10. Reference values for radioactive chemical parameters |
||||||
Parameter |
Unit |
IRCA |
WHO |
EUROPE |
EPA - United States |
Japan |
Drinking water risk index |
Harmonization of drinking water standards in the Americas 2005 |
Directive 2020/2184/EC 2020 |
Environmental water quality criteria for human health: 2015 |
Water Supply Act 2013 |
||
Uranium |
mg/L |
ne |
0,03 |
ne |
0,03 |
0,002 |
Alpha particles |
Bq/L |
ne |
0,1 |
ne |
0,555 |
ne |
Beta particles |
Bq/L |
ne |
1 |
ne |
1,48 |
ne |
Radium 226 and Radium 228 |
Bq/L |
ne |
ne |
ne |
0,185 |
ne |
Tritium (³H) |
Bq/L |
ne |
ne |
100 |
ne |
ne |
Permissible limits for parameters associated with pesticides
There are fifty-eight (58) pesticides for which international standards have already reported permissible limits. However, the IRCA has not set a maximum permitted value for each. However, the IRCA indicates that the total sum of the concentrations of pesticides and other substances, whose maximum permissible value is 0,0001 mg/L, may be 0,001 mg/L at most, without exceeding the individual values in any case,(41) table 11.
Given the above, reviewing this general standard and establishing an individual permissible value for each pesticide is necessary. In addition, the pesticides Aldrin, Chlordane, Cyanazine, 1,2-dibromo-3-chloropropane, Endrin, 1,2-dibromomethane, Ethylene Dibromide, Peptacloro, Heptachlor epoxide, and Lindane require a review of the acceptable permissible limit since they are above the values of international standards, table 11.
Table 11. Reference values for parameters associated with pesticides |
||||||
Parameter |
Unit |
IRCA |
WHO |
EUROPE |
EPA - United States |
Japan |
Drinking water risk index |
Harmonization of drinking water standards in the Americas 2005 |
Directive 2020/2184/EC 2020 |
Environmental water quality criteria for human health: 2015 |
Water Supply Act 2013 |
||
Pesticides |
mg/L |
0,0001* |
ne |
0,0005 |
ne |
ne |
Alachlor |
mg/L |
0,001** |
0,02 |
ne |
0,002 |
ne |
Aldicarb |
mg/L |
0,001** |
0,01 |
ne |
ne |
ne |
Aldrin |
mg/L |
0,001** |
0,00003 |
0,00003 |
ne |
ne |
Dieldrin |
mg/L |
0,001** |
ne |
ne |
ne |
ne |
Atrazine |
mg/L |
0,001** |
0,1 |
ne |
0,003 |
ne |
Bentazone |
mg/L |
0,001** |
ne |
ne |
ne |
0,2 |
Carbofuran |
mg/L |
0,001** |
0,007 |
ne |
0,04 |
0,005 |
Chlordane |
mg/L |
0,001** |
0,0002 |
ne |
0,002 |
ne |
Chlorothalonil |
mg/L |
0,001** |
ne |
ne |
ne |
0,05 |
Chlorotoluron |
mg/L |
0,001** |
0,03 |
ne |
ne |
ne |
Cyanazine |
mg/L |
0,001** |
0,0006 |
ne |
ne |
ne |
Dalapón |
mg/L |
0,001** |
ne |
ne |
0,2 |
ne |
DDT |
mg/L |
0,001** |
0,001 |
ne |
ne |
ne |
Diazinon |
mg/L |
0,001** |
ne |
ne |
ne |
0,005 |
1,2-dibromo-3-chloropropane |
mg/L |
0,001** |
0,001 |
ne |
0,0002 |
|
2,4-dichlorophenoxyacetic acid |
mg/L |
0,001** |
0,03 |
ne |
0,07 |
0,03 |
1,2-dichloropropane |
mg/L |
0,001** |
0,04 |
ne |
0,005 |
0,06 |
1,3 dichloropropane |
mg/L |
0,001** |
ne |
ne |
ne |
|
1,3-dichloropropene |
mg/L |
0,001** |
0,02 |
ne |
ne |
0,002 |
Dichlorvos |
mg/L |
0,001** |
0,02 |
ne |
ne |
0,008 |
Dinoceb |
mg/L |
0,001** |
|
ne |
0,007 |
ne |
Diquat |
mg/L |
0,001** |
0,03 |
ne |
0,02 |
ne |
Endo Alquitran |
mg/L |
0,001** |
ne |
ne |
0,1 |
ne |
Endrin |
mg/L |
0,001** |
0,0006 |
ne |
0,002 |
ne |
1,2-dibromoethane, ethylene dibromide |
mg/L |
0,001** |
0,0004 |
ne |
0,00005 |
ne |
Fenitrothion |
mg/L |
0,001** |
ne |
ne |
ne |
0,003 |
Glyphosate |
mg/L |
0,001** |
ne |
ne |
0,7 |
ne |
Peptacloro |
mg/L |
0,001** |
ne |
0,00003 |
0,0004 |
ne |
Heptachlor epoxide |
mg/L |
0,001** |
ne |
0,00003 |
0,0002 |
ne |
Hexachlorobenzene |
mg/L |
0,001** |
ne |
ne |
0,001 |
ne |
Isoproturon |
mg/L |
0,001** |
0,009 |
ne |
ne |
ne |
Lindane |
mg/L |
0,001** |
0,002 |
ne |
0,0002 |
ne |
Molinar |
mg/L |
0,001** |
ne |
ne |
ne |
ne |
Oxamyl |
mg/L |
0,001** |
ne |
ne |
0,2 |
ne |
Pentachlorophenol |
mg/L |
0,001** |
0,009 |
ne |
0,001 |
ne |
Permethrin |
mg/L |
0,001** |
ne |
ne |
ne |
ne |
Picloram |
mg/L |
0,001** |
ne |
ne |
0,5 |
ne |
Propanil |
mg/L |
0,001** |
ne |
ne |
ne |
ne |
Pyridate |
mg/L |
0,001** |
ne |
ne |
ne |
ne |
Simazine |
mg/L |
0,001** |
0,002 |
ne |
0,004 |
0,003 |
Terbutylazine |
mg/L |
0,001** |
0,007 |
ne |
ne |
ne |
Toxaphene |
mg/L |
0,001** |
ne |
ne |
0,003 |
ne |
Trifluralin |
mg/L |
0,001** |
0,02 |
ne |
ne |
ne |
2,4-db |
mg/L |
0,001** |
0,09 |
ne |
ne |
ne |
Dichloroprop |
mg/L |
0,001** |
ne |
ne |
ne |
ne |
Fenoprop |
mg/L |
0,001** |
0,009 |
ne |
0,05 |
ne |
Mcpb |
mg/L |
0,001** |
ne |
ne |
ne |
ne |
2,4,5-t |
mg/L |
0,001** |
0,009 |
ne |
ne |
ne |
Thiuram |
mg/L |
0,001** |
ne |
ne |
ne |
0,006 |
Thiobencarb |
mg/L |
0,001** |
ne |
ne |
ne |
0,02 |
Isoxathion |
mg/L |
0,001** |
ne |
ne |
ne |
0,008 |
Isoprothiolane |
mg/L |
0,001** |
ne |
ne |
ne |
0,04 |
Propyzamide |
mg/L |
0,001** |
ne |
ne |
ne |
0,05 |
Fenobucarb |
mg/L |
0,001** |
ne |
ne |
ne |
0,03 |
Chloronitrophen |
mg/L |
0,001** |
ne |
ne |
ne |
0,005 |
Iprobenfos |
mg/L |
0,001** |
ne |
ne |
ne |
0,008 |
Epn |
mg/L |
0,001** |
ne |
ne |
ne |
0,006 |
Triclopir |
mg/L |
0,001** |
ne |
ne |
ne |
0,006 |
Organophosphate pesticides |
mg/L |
0,0001* |
ne |
0,0001 |
ne |
ne |
Quantitative comparison – Reference values and water quality indices
Taking into account the common reference values for permissible water quality limits described for the IRCA, the calculation of the other indices (WQINSF, Dinius, ICAUCA, DWQI, UWQI, ISCA, IAP, and AMOEBA) is presented below, taking into account their calculation methods and assuming values that are considered unacceptable for the IRCA.
Quantitative comparison – IRCA vs WQINSF
The two indices have in common the parameters of turbidity, pH, phosphates, nitrates, and total coliforms. The WQINSF index gives a numerical value similar to that of the IRCA. They have in common that the most relevant parameters in order of importance are total coliforms and turbidity, table 12. However, it should be noted that the comparison does not use the dissolved oxygen saturation and BOD parameters of the WQINSF index, which, according to their weight, contribute 17 % and 11 % of the analysis to water quality. In turn, E. coli and free residual chlorine from the IRCA index are not considered, which, according to their weight, contribute 25 % and 15 %, respectively, to the water quality analysis.
Table 12. Comparison of IRCA and WQINSF water quality indices for common parameters |
|||||||
Parameter |
Maximum value |
Units |
Test value |
IRCA score |
Q-value (Qi) |
Weighting (Wi) |
Qi*Wi |
Turbidity |
2 |
UNT |
3 |
15 |
91,9 |
0,08 |
7,4 |
pH |
6,5 -9 |
H3O+ |
6,4 |
1,5 |
46,3 |
0,077 |
3,6 |
Phosphates |
0,5 |
mg PO43 / L |
0,6 |
1 |
56,1 |
0,1 |
5,6 |
Nitrates |
10 |
mg NO3-/ L |
11 |
1 |
49,2 |
0,09 |
4,4 |
Total coliforms |
0 |
UFC /100 cm3 |
1 |
15 |
137,6 |
0,09 |
12,4 |
IRCA Index Value |
33,5 |
NSF WQI Index Value |
33,3 |
||||
Medium risk level |
|
Bad |
|
Quantitative comparison – IRCA vs Dinius
The two indices have in common the parameters of apparent color, pH, total alkalinity, total hardness, chlorides, nitrates, and total coliforms. The Dinius index has a different numerical value from the IRCA, where it presents its quality classification in ascending order, with low values associated with poor water quality and high values with good water quality. On the other hand, the IRCA presents its quality classification in ascending order, with low values associated with good water quality and high values with poor water quality table 13.
However, if we consider that the Dinius index classification is based on 100 points, we can subtract the Dinius value from 100 points, giving a value of 95,8. This indicates that the parameters calculated are low within an additive model, and for this reason, the water classification is low if only the parameters between the two indicators are considered.
Both indices have in common that the most relevant parameters are total coliforms, followed by pH, total alkalinity, and nitrates. However, it should be noted that the comparison does not use the parameters of fecal coliforms, DO, and COD from the Dinius index, which, according to their weight, contribute 11,6 %, 10,9 %, and 9,7 % of the analysis to water quality. In turn, E. coli and free residual chlorine from the IRCA index are not considered, which, according to their weight, contribute 25 % and 15 %, respectively, to the water quality analysis.
Table 13. Comparison of IRCA and Dinius water quality indices for common parameters |
||||||||
Parameter |
Maximum value |
Units |
Test value |
IRCA score |
Q-value (Ii) |
Weighting (Wi) |
Ii^Wi |
|
Appearance color |
15 |
UPC |
16 |
6 |
54,3 |
0,063 |
1,3 |
|
pH |
6,5 |
H3O+ |
6,4 |
1,5 |
2,2 |
0,077 |
1,1 |
|
Total alkalinity |
200 |
mg CaCO3 / L |
201 |
1 |
35,8 |
0,077 |
1,3 |
|
Total hardness |
300 |
mg CaCO3 / L |
301 |
1 |
39,4 |
0,063 |
1,3 |
|
Chlorides |
250 |
mg Cl- / L |
251 |
1 |
28,2 |
0,065 |
1,2 |
|
Nitrates |
10 |
mg NO3- / L |
11 |
1 |
3,6 |
0,074 |
1,1 |
|
Total coliforms |
0 |
UFC/100 cm3 |
1 |
15 |
27,3 |
0,090 |
1,3 |
|
IRCA Index Value |
26,5 |
Dinius Index Value |
4,2 |
|||||
Medium risk level |
|
Very Poor |
|
|||||
Table 14. Comparison of IRCA and DWQI water quality indices |
|||||||||
Parameter |
Maximum value |
Units |
Test value |
Contribution to IRCA (%) |
Excess range |
Normalized sum of excesses |
Amplitude |
Scope |
Frequency |
Apparent color |
15 |
UPC |
16 |
6 |
0,1 |
0,85 |
45,84 |
22,73 |
8,33 |
Turbidity |
2 |
NTU |
3 |
15 |
0,5 |
||||
Free residual chlorine |
2 |
mg/L Cl2 |
2,1 |
15 |
0,1 |
||||
Total coliforms |
0 |
UFC/100 cm3 |
1 |
15 |
9,0 |
||||
E. coli |
0 |
UFC/100 cm3 |
1 |
25 |
9,0 |
||||
IRCA Index Value |
76,0 |
DWQI Index Value |
70,1 |
||||||
High risk level |
|
Regular |
|
Quantitative comparison – IRCA vs ISQA
Given that ISQA evaluates temperature, COD, total suspended solids, dissolved oxygen, and conductivity, it is not possible to compare the two indices, as IRCA does not consider these parameters according to Decree 2115 of 2007.
Quantitative comparison – IRCA vs IAP
The two indices have the parameters of apparent color, turbidity, manganese, zinc, and total iron in common. The IAP index has a different numerical value from the IRCA, where it presents its quality classification in ascending order, with low values associated with poor water quality and high values with good water quality. On the other hand, the IRCA presents its quality classification in ascending order, with low values associated with good water quality and high values with poor water quality table 15.
In this sense, the values between the two indices are different since the vast majority of the parameters considered by the IAP index to obtain the indicators for both toxic substances (ST) and organic substances (SO) are not considered by the IRCA, these being trihalomethanes, cadmium, chromium, lead, nickel, mercury, pyridine chlorochromate, for the first indicator and copper for the second indicator. Likewise, the comparison does not consider the parameters temperature, dissolved oxygen, biochemical oxygen demand, thermotolerant coliforms, total nitrogen, total phosphorus, and solids. The IQA-CETESB indicator, which belongs to the IAP index, table 15.
Table 15. Comparison of IRCA vs. IAP water quality indices |
||||||||||
Parameter |
Maximum value |
Units |
Test value |
Contribution to IRCA (%) |
Quality (qi) |
Weighting (wi) |
CETESB IQA |
Toxic Substances (TS) |
Organoleptic Substances (OS) |
ISTO (ST*SO) |
Apparent color |
15 |
UPC |
16 |
6 |
80 |
0,08 |
8,52 |
|
|
|
Turbidity |
2 |
NTU |
3 |
15 |
50 |
0,12 |
|
|
|
|
Manganese |
1 |
mg Mn/L |
0,2 |
1,0 |
|
|
|
0,53 |
0,81 |
0,43 |
Zinc |
1 |
mg Zn/L |
5,5 |
1,0 |
|
|
|
|||
Total iron |
1,5 |
mg Fe/L |
0,4 |
1,5 |
|
|
|
|||
IRCA Index value |
24,5 |
IAP Index Value (ISTOxIQA CETESB) |
3,64 |
|||||||
Medium risk level |
|
Terrible |
|
Quantitative comparison – IRCA vs AMOEBA (Nutrient pollution index (NPI))
Since the AMOEBA project includes several indices to represent quality concerning different aspects, the index that can be used is the nutrient pollution index, as they have turbidity, pH, phosphates, nitrates, and nitrites in common. In this case, the AMOEBA-NPI index exceeds the desirable value for these parameters, as shown in table 16. However, ammonium, total nitrogen, total phosphorus, chlorophyll a, and conductivity are not considered, and when calculated over all parameters, the indicator gives a low result.
Table 16. Comparison of IRCA and AMOEBA water quality indices |
|||||||
Parameter |
Maximum value |
Units |
Test value |
Contribution to IRCA (%) |
Quality (qi) |
Weighting (wi) |
Ln qi^Wi |
Turbidity |
2 |
UNT |
3 |
15 |
99,2 |
0,2 |
0,92 |
pH |
6,5 -9 |
H3O+ |
6,4 |
1,5 |
94,4 |
0,2 |
0,91 |
Phosphates |
0,5 |
mg PO43- /L |
0,6 |
1 |
100,1 |
0,2 |
0,92 |
Nitrates |
10 |
mg NO3-}/L |
11 |
1 |
72,9 |
0,2 |
0,86 |
Nitrites |
0,1 |
mg NO3-/L |
0,2 |
3 |
99,5 |
0,2 |
0,92 |
IRCA Index Value |
21,5 |
Valor del Índice AMOEBA -NPI |
92,6 |
||||
Medium risk level |
|
|
92,6/70 |
Quantitative comparison – IRCA vs UWQI
The two indices have the parameters of apparent color, pH, nitrates, and total coliforms in common. The UWQI index has a different numerical value from the IRCA, where the index presents its quality classification in ascending order, with low values associated with poor water quality and high values with good water quality. On the other hand, the IRCA presents its quality classification in ascending order, with low values associated with good water quality and high values with poor water quality table 17.
In addition, the UWQI index considers other parameters that the IRCA does not take into account, such as cadmium, cyanide, mercury, selenium, arsenic, fluoride, nitrogen, OD, pH, BOD, and total phosphorus, and when calculated on all parameters, the indicator gives a low result.
Table 17. Comparison of IRCA and UWQI water quality indices |
|||||||
Parameter |
Maximum value |
Units |
Test value |
Contribution to IRCA (%) |
Q-value (Li) |
Weighting (Wi) |
Qi*Li |
pH |
6,5 -9 |
H3O+ |
6,4 |
1,5 |
46,3 |
0,029 |
3,6 |
Nitrates |
10 |
mg NO3-/L |
11 |
1 |
63,6 |
0,086 |
4,4 |
Total coliforms |
0 |
UFC /100 cm3 |
1 |
15 |
137,6 |
0,114 |
12,4 |
IRCA index value |
17,5 |
UWQI index value |
20,4 |
||||
Medium risk level |
|
Poor |
|
Quantitative comparison – IRCA vs ICAUCA
The two indices have the parameters of apparent color, pH, and total coliforms in common. The ICAUCA index has a different numerical value from the IRCA, where the index presents its quality classification in ascending order, with low values associated with poor water quality and high values with good water quality. On the other hand, the IRCA presents its quality classification in ascending order, with low values associated with good water quality and high values with poor water quality table 18.
In addition, the ICAUCA index considers other parameters that the IRCA does not, such as BOD, turbidity, %DO, total solids, pH, total coliforms, total nitrogen, total phosphorus, and total suspended solids. When calculated for all parameters, the indicator gives a low result.
Table 18. Comparison of IRCA vs. ICAUCA water quality indices |
|||||||
Parameter |
Units |
Test value |
Maximum value |
Contribution to IRCA (%) |
Q-value (Ii) |
Weighting (Wi) |
Ii^Wi |
Apparent color |
UPC |
16 |
15 |
6 |
65,4 |
0,05 |
1,2 |
pH |
H3O+ |
6,4 |
6,5 |
1,5 |
574570061 |
0,08 |
5,0 |
Total coliforms |
UFC/100 cm3 |
1 |
0 |
15 |
96,4 |
0,15 |
2,0 |
IRCA index value |
22,5 |
ICAUCA index value |
12,3 |
||||
Medium risk level |
|
Terrible |
|
Assessment of waterborne diseases in relation to the IRCA
According to the 2022 National Report on Water Quality for Human Consumption (INCA), estimates of ADI cases due to dietary water consumption are made based on SIVICAP data, applying probabilistic models for total coliforms, E. coli, Giardia spp, Cryptosporidium, and hepatitis A (table 19).
Table 19. Comparison between the microbiological parameters analyzed by the IRCA vs. the determinations of the causal agents of acute diarrheal diseases INCA (2022) |
||
Etiological agent |
Statistics |
IRCA parameters |
Total coliforms |
28,6 % of values (60 out of 210 results)(68) |
Yes |
E. coli |
28,6 % of values (22 out of 210 results)(68) |
Yes |
Giardia spp |
28,6 % of values (10 out of 210 results)(68) |
Yes |
Cryptosporidium |
7 % of values (60 out of 210 results)(68) |
Yes |
Hepatitis A. |
12,7 % of municipalities report infections(68) |
No |
Analysis of potential emerging contaminants according to the CAS list to be considered as IRCA parameters
None of the 1 079 191 CAS numbers for chemical compounds, polymers, preparations, and alloys,(69) are directly included in the IRCA monitoring parameters. Some of them have been assessed for risk, others are being studied for their hazardousness, and others are unknown in terms of risk.
According to the national pesticide registry, there are 3 507 different commercial pesticide products and 71 physiological control products,(70) none of which are covered by the IRCA.
CONCLUSIONS
The most common parameters in water analysis include microbiological parameters such as fecal coliforms, which should be included in the IRCA as they provide a more specific assessment of microorganisms associated with fecal contamination of water. Total coliforms cover a range of microorganisms not related to acute diarrheal diseases.
The most common physical parameters are temperature, turbidity, dissolved oxygen, dissolved solids, and conductivity. However, temperature is not considered relevant due to the difficulty of changing the temperature of a body of water. Dissolved solids, which can be measured by conductivity, are also not considered appropriate. In addition, it is essential to include DO to assess the degree of eutrophication of water due to microbial activity that degrades organic matter, and to complement microbiological parameters and BOD.
The most predominant inorganic chemical parameters are pH, nitrates, and total phosphorus. The IRCA considers the first two, and the last encompasses all phosphorus species. Given the above and the fact that phosphate is formed from inorganic phosphorus and is the most abundant species, it must be maintained and is an indicator of contamination by agricultural inputs.
In addition, the most analyzed inorganic chemical parameters include arsenic, cadmium, chromium, mercury, lead, zinc, and copper, which must be considered when analyzing water contamination with heavy metals.
On the other hand, the parameters for cyanide, fluoride, mercury, nickel, zinc, antimony, iron, and manganese should be reviewed if the permissible limit may be more restrictive, as proposed by international standards.
Among the most commonly analyzed organic chemical parameters is BOD, which should be included as it allows for the detection of microbiologically degradable organic matter and complements microbiological parameters and DO.
Finally, international standards report twenty-nine organic compounds related to organic substances associated with pesticides, with permissible limits that must be considered in water analysis.
In addition, it is necessary to review the permissible limits for the pesticides Aldrin, Chlordane, Cyanazine, 1,2-dibromo-3-chloropropane, Endrin, 1,2-dibromomethane, Ethylene Dibromide, Pentachloro, Heptachlor Epoxide, and Lindane, since international standards set stricter values than those established for pesticides by the IRCA.
Water quality and epidemiological reports show that the parameters commonly analyzed in water are Total Coliforms. E. coli, Giardia spp, and Cryptosporidium. However, international standards are beginning to analyze somatic coliphages, as viruses produce many AWEs. Likewise, according to the incidence of hepatitis A, it is considered a water quality parameter. Therefore, it is believed that the IRCA should consider both coliphages and hepatitis A.
REFERENCES
1. Suárez S, Molina E. El desarrollo industrial y su impacto en el medio ambiente. Rev Cubana Hig Epidemiol. 2014;52(3):357-63.
2. Arias J. Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Rev Investig Agrar Ambient. 2017;8(1):151-67.
3. Ahmed M, Matsumoto M, Ozaki A, Thinh NV, Kurosawa K. Heavy metal contamination of irrigation water, soil, and vegetables and the difference between dry and wet seasons near a multi-industry zone. Water. 2019;11(3):583. https://doi.org/10.3390/w11030583
4. Manoj S, Thirumurugan M, Elango L. An integrated approach for assessment of groundwater quality in and around uranium mineralized zone, Gogi region, Karnataka, India. Arab J Geosci. 2017;10(24):557. https://doi.org/10.1007/s12517-017-3321-5
5. Jawad M, Arslan M, Siddique M, Ali S, Tahseen R, Afzal M. Potentialities of floating wetlands for the treatment of polluted water of river Ravi, Pakistan. Ecol Eng. 2019;133:167-76. https://doi.org/10.1016/j.ecoleng.2019.04.022
6. Bhuiyan A, Dampare B, Islam A, Suzuki S. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices. Environ Monit Assess. 2015;187(4075):1-21. https://doi.org/10.1007/s10661-014-4075-0
7. Zhang J, Li H, Zhou Y, Dou L, Cai L. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: a case study in the Pearl River Delta, South China. Environ Pollut. 2018;235:710-9. https://doi.org/10.1016/j.envpol.2017.12.106
8. Sabogal L. El riesgo sanitario y la eficiencia de los sistemas de tratamiento en la selección de tecnologías para la potabilización del agua. Cali: Universidad del Valle; 2000.
9. Rojas R. Guía para la vigilancia y control de la calidad del agua para consumo humano. 2002.
10. Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente (CEPIS). Sección 2. Evaluación y manejo del riesgo. En: Manual de evaluación y manejo de sustancias tóxicas en aguas superficiales. 2001. p. 46.
11. Guerra C. Ponderación de los riesgos de origen microbiano y químico en la desinfección del agua potable: la perspectiva panamericana. Bol Oficina Sanit Panam. 1993;115:451-4.
12. World Health Organization (WHO). Conquering suffering, enriching humanity. The world health report 1997. Geneva: WHO Graphics; 1997. p. 157.
13. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). El medio ambiente en Colombia. Bogotá: IDEAM; 2001.
14. Fernández N, Solano F. Índices de calidad y contaminación del agua. Pamplona: Universidad de Pamplona; 2008.
15. González T, Osorio I, Riascos A. Evaluación del proceso de reporte del IRCA a las plataformas SUI y SIVICAP web desde el marco del INCA en los años 2016-2019, caso de estudio: Magdalena, zona bananera. Encuentro Int Educ Ing. 2019.
16. Ministerio de Salud y Protección Social. Informe nacional de calidad del agua para consumo humano. 2021. Disponible en: https://www.minvivienda.gov.co/sites/default/files/documentos/informe-nacional-de-calidad-del-agua-para-consumo-humano-inca-2021.pdf
17. Instituto Nacional de Salud. Estado de la vigilancia de la calidad del agua para consumo humano en Colombia. 2019. Disponible en: https://www.ins.gov.co/BibliotecaDigital/estado-de-la-vigilancia-de-la-calidad-del-agua-para-consumo-humano-en-colombia-2019.pdf
18. Carrasco D, Delgado Y, Cobos F. Contaminantes emergentes y su impacto en la salud. Emerging contaminants and its impact on the health. Rev Fac Cienc Méd Univ Cuenca. 2017;35(2):55-9.
19. González T, Osorio I, Riascos A. Evaluación del proceso de reporte del IRCA a las plataformas SUI y SIVICAP web desde el marco del INCA en los años 2016-2019, caso de estudio: Magdalena, zona bananera. Encuentro Int Educ Ing. 2019.
20. García C, García J, Rodríguez J, Pacheco R, García M. Limitaciones del IRCA como estimador de calidad del agua para consumo humano. Rev Salud Pública. 2018;20:204-7.
21. Cruz A, Rodriguez L. Análisis de los índices de riesgo de calidad de agua potable (IRCA) en Boyacá entre 2016-2019. Agricolae Habitat. 2021;4(1).
22. Romero J, Ibarra N. Valoración del índice de calidad del agua cruda (ICA), del índice de riesgo de la calidad del agua para consumo humano (IRCA), del índice de tratamiento (IT), del índice de continuidad (IC) y del índice de riesgo municipal por abastecimiento de agua para consumo humano por prestador (IRABAPP), para el periodo 2010-2011, de sistemas de tratamiento de agua potable. Rev Esc Colomb Ing. 2013;23(92):13-22.
23. Briñez K, Guarnizo C, Arias A. Calidad del agua para consumo humano en el departamento del Tolima. Rev Fac Nac Salud Pública. 2012;30(2):175-82.
24. Enríquez C, Torres A, Enciso F. Comportamiento del índice de riesgo de la calidad del agua para consumo humano y demanda de agua en el acueducto Yamboró, Pitalito - Huila. Rev Investig Agroempresariales. 2020;7.
25. Torres M, de Navia L. Calidad físico-química y microbiológica del agua del municipio de Bojacá, Cundinamarca. Nova. 2010;8(14).
26. Candelario M, Pinto L. Evaluación del agua para consumo humano utilizando el índice de riesgo de la calidad del agua en el municipio de Puerto Nariño (Amazonas). Agricolae Habitat. 2023;6(2):27-40.
27. González L. Evaluación del índice de riesgo de calidad de agua (IRCA) para la mejora de las condiciones de calidad del sistema de potabilización del acueducto de la vereda Quiche del municipio de Chiquinquirá–Boyacá. 2020.
28. Doncel J, Florex C. QIRCA: complemento de QGIS para calcular índices de riesgo de la calidad del agua para consumo humano-IRCA. 2018.
29. Torres F, Carvajal A. Cobertura de acueducto y alcantarillado, calidad del agua y mortalidad infantil en Colombia, 2000-2012 (No. 012228). Bogotá: Universidad de los Andes, Facultad de Economía, CEDE; 2014.
30. Jiménez L, Ramos J, Guio P. Análisis del índice de riesgo de la calidad del agua para consumo humano-IRCA y su relación con variables meteorológicas y ubicación geográfica para el departamento del Tolima en los años 2012–2013. Publicaciones Investig. 2016;10:69-81.
31. Jiménez C. Contaminantes orgánicos emergentes en el ambiente: productos farmacéuticos. Rev Lasallista Investig. 2011;8(2):143-53.
32. Jank L, Hoff R, Costa F, Pizzolato T. Simultaneous determination of eight antibiotics from distinct classes in surface and wastewater samples by solid-phase extraction and high-performance liquid chromatography electrospray ionisation mass spectrometry. Int J Environ Anal Chem. 2014;94(10):1013–37.
33. Spongberg A, Witter J, Acuña J, Vargas J, Murillo M, Umaña G, et al. Reconnaissance of selected PPCP compounds in Costa Rica surface waters. Water Res. 2011;45(20):6709–17.
34. Estrada E, Cortés J, González A, Calderón C, de Rivera M, Ramírez E, et al. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico. Sci Total Environ. 2016;571:1172–82.
35. Bujanow D, Pérez V, Gavilán J, Luis J. Estudio sobre la presencia y distribución de contaminantes emergentes en los acuíferos detríticos del río Guadalhorce. En: Unidos por el agua. Huelva: Club del Agua Subterránea; 2018. p. 701–8.
36. Vadillo I, Jiménez P, Aranda J, Denguir F, Luque J, Benavente J. Presencia y distribución de contaminantes emergentes en cuatro cuencas antropizadas del sur de la Península Ibérica. 2018.
37. Meléndez J, García Y, Galván V, de León LD, Vargas K, Mejía J, Ramírez RF. Contaminantes emergentes. Problemática ambiental asociada al uso de antibióticos. Nuevas técnicas de detección, remediación y perspectivas de legislación en América Latina. Rev Salud Ambient. 2020;20(1):53–61.
38. Martínez I, Soto J, Lahora A. Antibióticos como contaminantes emergentes. Riesgo ecotoxicológico y control en aguas residuales y depuradas. Ecosistemas. 2020;29(3):2070.
39. Ramírez L, Chicaiza S, Ramos A, Álvarez C. Detección de antibióticos betalactámicos, tetraciclinas y sulfamidas como contaminantes emergentes en los ríos San Pedro y Pita del cantón Rumiñahui. LA GRANJA Rev Cienc Vida. 2019;30(2):88–102.
40. Taborda D, Venegas W. Elaboración del mapa de riesgos de calidad del agua para consumo humano de la quebrada La Hoya en el municipio de Zipaquirá, Cundinamarca. 2016.
41. Ministerio de Salud y Protección Social. Programa nacional de prevención, manejo y control de la infección respiratoria aguda y la enfermedad diarreica aguda. 2023. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/programa-nacional-ira-eda-2023.pdf
42. Universidad de Pamplona. Capítulo II. Indicadores de calidad del agua. Generalidades. Disponible en: https://www.unipamplona.edu.co/unipamplona/portalIG/home_10/recursos/general/pag_contenido/libros/06082010/icatest_capitulo2.pdf
43. Ministerio de Ambiente y Desarrollo Sostenible. 2007.
44. Sutadian A, Muttil N, Yilmaz A, Perera J. Development of river water quality indices—a review. Environ Monit Assess. 2016;188:1–29.
45. Ardila N, Arriola E. Efecto de la quema de llantas en la calidad del agua de un tramo de la quebrada Piedras Blancas. Tecnol Cienc Agua. 2017;8(5):39–55.
46. Balmaseda C, García Y. Índice canadiense de calidad de las aguas para la cuenca del río Naranjo, provincia Las Tunas, Cuba. Rev Cienc Téc Agropecu. 2014;23(3):11–6.
47. de Bustamante J, Sanz J, Goy J. Estudio de la calidad de las aguas superficiales en los espacios naturales del sur de las provincias de Salamanca y Ávila. Aplicaciones del índice ISQA. 2002. Disponible en: https://sge.usal.es/archivos/geogacetas/Geo31/Art26.pdf
48. Companhia Ambiental do Estado de São Paulo (CETESB). Apêndice E. Índices de qualidade das águas, critérios de avaliação da qualidade dos sedimentos e indicador de controle de fontes. 2021. Disponible en: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2022/11/Apendice-E-Indices-de-Qualidade-das-Aguas.pdf
49. Fernández S. Índices de calidad (ICAs) y de contaminación (ICOs) del agua de importancia mundial. Capítulo III. Pamplona: Universidad de Pamplona; 2005.
50. Boyacioglu H. Development of a water quality index based on a European classification scheme. Water SA. 2007;33(1):101–6.
51. Corporación Autónoma Regional del Valle del Cauca, Dirección Técnica Ambiental. Objetivos de calidad del río Cauca – tramo Valle del Cauca. Documento técnico de soporte. 2023. Disponible en: https://www.cvc.gov.co/sites/default/files/2023-06/Res.%200298%20de%202023-%20Objetivos%20de%20calidad%20del%20r%C3%ADo%20Cuaca%20-%20Tramo%20Valle%20del%20Cauca.pdf
52. Pachés A. Contaminantes emergentes. Valencia: Universidad Politécnica de Valencia; 2020.
53. Bofill S, Clemente P, Albiñana N, Maluquer C, Hundesa A, Girones R. Efectos sobre la salud de la contaminación de agua y alimentos por virus emergentes humanos. Rev Esp Salud Pública. 2005;79:253–69.
54. Becerril J. Optimización de metodologías analíticas para la determinación de contaminantes emergentes en aguas de abastecimiento y residuales. 2012.
55. Gómez O. Enfermedad diarreica aguda por Escherichia coli enteropatógenas en Colombia. Rev Chil Infectol. 2014;31(5):577–86.
56. Chaves D, Fernández J, Ospina I, López M, Moncada L, Reyes P. Tendencia de la prevalencia y factores asociados a la infección por Giardia duodenalis en escolares y preescolares de una zona rural de Cundinamarca. Biomédica. 2007;27(3):345–51.
57. Ekici A, Yilmaz H, Beyhan YE. Prevalencia de la criptosporidiosis en seres humanos y terneros, y detección molecular del Cryptosporidium parvum. Rev MVZ Córdoba. 2022;27(2):1–9.
58. Pérez E. Control de calidad en aguas para consumo humano en la región occidental de Costa Rica. Rev Tecnol Marcha. 2016;29(3):3–14.
59. Bolaños J, Cordero G, Segura G. Determinación de nitritos, nitratos, sulfatos y fosfatos en agua potable como indicadores de contaminación ocasionada por el hombre, en dos cantones de Alajuela (Costa Rica). Rev Tecnol Marcha. 2017;30(4):15–27.
60. Pabón S, Benítez R, Sarria R, Gallo J. Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Una revisión. Entre Cienc Ing. 2020;14(27):9–18.
61. Jiménez A, Santa L, Otazua M, Ayerdi M, Galarza A, Gallastegi M, et al. Ingesta de flúor a través del consumo de agua de abastecimiento público en la cohorte INMA-Gipuzkoa. Gac Sanit. 2018;32(5):418–24.
62. Menéndez C, Dueñas J. Los procesos biológicos de tratamiento de aguas residuales desde una visión no convencional. Ing Hidrául Amb. 2018;39(3):97–107.
63. Instituto Nacional de Salud. Informe técnico de vigilancia por laboratorio de Cryptosporidium spp. y Giardia spp. en aguas. 2019. Disponible en: https://www.ins.gov.co/buscador-eventos/Informacin%20de%20laboratorio/Informe-t%C3%A9cnico-de-vigilancia-por-laboratorio-de-Cryptosporidium-spp-y-Giardia-spp-en-aguas.pdf
64. López L, Sánchez M, Baena M, González M, Urhán J. Verificación del método para la detección y cuantificación de Clostridium perfringens en agua potable mediante filtración por membrana. Rev Politéc. 2016;12(23):83–9.
65. Ramírez L, Londoño A. Estado del arte de la Legionella pneumophila en aguas termales. Encuentro Int Educ Ing. 2020.
66. Avendaño A, Arguedas C. Microcistina en plantas de tratamiento de agua para consumo humano en un ambiente tropical: el Área Metropolitana de Costa Rica. Rev Biol Trop. 2006;54(3):711–6.
67. Jiménez L, Barquero M, Jiménez K, Álvarez CV, Alvarado DM, Lizano LR, Achí R. Relación entre la presencia de colifagos en agua para consumo humano, las lluvias y las diarreas agudas en Costa Rica. Rev Costarric Salud Pública. 2015;24(2):160–7.
68. Ministerio de Salud y Protección Social. Informe nacional de calidad del agua para consumo humano INCA 2022. 2022. Disponible en: https://www.ins.gov.co/BibliotecaDigital/informe-nacional-de-calidad-del-agua-para-consumo-humano-colombia-2022.pdf
69. CymitQuímica. Números CAS. 2023. Disponible en: https://cymitquimica.com/es/cas/
70. Instituto Colombiano Agropecuario (ICA). Registros nacionales de plaguicidas y reguladores fisiológicos. 2023. Disponible en: https://www.ica.gov.co/areas/agricola/servicios/agricultura-ecologica-1/documentos/publicacion-bd_rn-rf_-31-mar-2022-1.aspx
FUNDING
None.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.
AUTHOR CONTRIBUTION
Conceptualization: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Data curation: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Formal analysis: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Research: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Methodology: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Project management: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Resources: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Software: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Supervision: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Validation: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Visualization: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Writing – original draft: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.
Writing – review and editing: José Luis Guataquira Rincón; René Ricardo Cuéllar Rodríguez.