Impact of Mercury Poisoning in Rivers: A Bibliometric Review of Human Health Effects

Authors

DOI:

https://doi.org/10.56294/ere2025172

Keywords:

mercury, rivers, human health, bibliometrics, methylmercury, pollution

Abstract

Mercury poisoning in rivers poses a serious threat to aquatic ecosystems and human health, particularly for communities reliant on these resources. This article presents a bibliometric review of scientific literature (2015–2025) to analyze the impact of mercury in rivers and its health effects, identifying research trends and gaps. The methodology involved a Scopus search using key terms such as "mercury poisoning," "rivers," and "human health," selecting 1,194 articles analyzed through bibliometric indicators and content analysis with Bibliometrix. Results revealed a progressive increase in publications, peaking in 2023–2024, reflecting growing global concern. Four main thematic areas were identified: (1) toxicity mechanisms and bioaccumulation of methylmercury, (2) health effects, particularly in vulnerable groups, (3) risk assessment and monitoring methodologies, and (4) mitigation and remediation strategies. Key findings highlighted disparities in artisanal mining regions, advances in detection technologies, and challenges in implementing policies like the Minamata Convention. The study concludes that while robust evidence exists on mercury risks, gaps persist in harmonizing methods and applying sustainable solutions.

References

1. Khan E, Abbas Z. A scoping review of sources of mercury and its health effects among Pakistan’s most vulnerable population. Reviews on Environmental Health. 2020;36:39-45. https://doi.org/10.1515/reveh-2019-0099

2. González Vallejo R. La transversalidad del medioambiente: facetas y conceptos teóricos. Región Científica. 2023;2(2):202393. https://doi.org/10.58763/rc202393

3. Zhao W, Gan R, Xian B, Wu T, Wu G, Huang S, et al. Overview of Methylation and Demethylation Mechanisms and Influencing Factors of Mercury in Water. Toxics. 2024;12. https://doi.org/10.3390/toxics12100715

4. Teng D, Mao K, Ali W, Xu G, Huang G, Niazi N, et al. Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Advances. 2020;10:23221-32. https://doi.org/10.1039/d0ra01507e

5. Valencia-Celis AU, Patiño GR, Sánchez-Castillo V. Environmental Knowledge Management Proposals in Education Systems. Bibliotecas. Anales de investigación. 2023;19(2). https://dialnet.unirioja.es/servlet/articulo?codigo=9027955

6. Gutierrez-Mosquera H, Marrugo-Negrete J, Díez S, Morales-Mira G, Montoya-Jaramillo L, Jonathan M. Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: Focus on human health. Journal of hazardous materials. 2020;404 Pt A:124080. https://doi.org/10.1016/J.JHAZMAT.2020.124080

7. Jeong H, Ali W, Zinck P, Souissi S, Lee J. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. The Science of the total environment. 2024:173574. https://doi.org/10.1016/j.scitotenv.2024.173574

8. Leal-Nazaré C, Arrifano G, Lopes-Araújo A, Santos-Sacramento L, Barthelemy J, Soares-Silva I, et al. Methylmercury neurotoxicity: Beyond the neurocentric view. The Science of the total environment. 2024:170939. https://doi.org/10.1016/j.scitotenv.2024.170939

9. Da Silva D, Bittencourt L, Baia-Da-Silva D, Chemelo V, Eiró-Quirino L, Nascimento P, et al. Methylmercury Causes Neurodegeneration and Downregulation of Myelin Basic Protein in the Spinal Cord of Offspring Rats after Maternal Exposure. International Journal of Molecular Sciences. 2022;23. https://doi.org/10.3390/ijms23073777

10. Eiró L, Ferreira M, Bittencourt L, Aragão W, De Souza M, Silva M, et al. Chronic methylmercury exposure causes spinal cord impairment: proteomic modulation and oxidative stress. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association. 2020:111772. https://doi.org/10.1016/j.fct.2020.111772

11. Martoredjo I, Santos L, Vilhena J, Rodrigues A, De Almeida A, Passos C, et al. Trends in Mercury Contamination Distribution among Human and Animal Populations in the Amazon Region. Toxics. 2024;12. https://doi.org/10.3390/toxics12030204

12. Sánchez-Castillo V, Gómez-Cano CA, Pérez-Gamboa AJ. La Economía Azul en el contexto de los objetivos del desarrollo sostenible: una revisión mixta e integrada de la literatura en la base de datos Scopus. AiBi Revista De Investigación, Administración E Ingeniería. 2024;12(2):206-21. https://doi.org/10.15649/2346030X.4028

13. Pérez Gamboa AJ, Sánchez Castillo V. Derecho Educacional y desarrollo sostenible: un análisis de su relación y líneas de desarrollo futuro. Revista Academia & Derecho. 2024;17(28). https://doi.org/10.18041/2215-8944/academia.28.11839

14. Gómez Cano CA, Pérez Gamboa A, Sánchez Castillo V. Análisis de la producción científica entorno a ODS 11: Ciudades y Comunidades Sostenibles. Mundo FESC. 2024;14(28):118-36. https://doi.org/10.61799/2216-0388.1585

15. Sánchez Castillo V, Pérez Gamboa AJ, Gómez Cano CA. Trends and evolution of Scientometric and Bibliometric research in the SCOPUS database. Bibliotecas. Anales de investigación. 2024;20(1). http://revistas.bnjm.sld.cu/index.php/BAI/article/view/834

16. Ledesma F, Malave-González BE. Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica. 2022;1(1):202214. https://doi.org/10.58763/rc202214

17. Gómez-Cano C, Sánchez-Castillo V, Clavijo-Gallego TA. Mapping the Landscape of Netnographic Research: A Bibliometric Study of Social Interactions and Digital Culture. Data and Metadata. 2023;2(25). https://doi.org/10.56294/dm202325

18. Gómez-Cano C, Sánchez-Castillo V. Systematic review on Augmented Reality in health education. Gamification and Augmented Reality. 2023;1:28. https://doi.org/10.56294/gr202328

19. Gómez Cano CA, Sánchez Castillo V, Pérez Gamboa A. El turismo como dinamizador del desarrollo económico: una revisión mixta de la producción científica. Dictamen Libre. 2024;35. https://dialnet.unirioja.es/servlet/articulo?codigo=9763789

20. Higuera Carrillo EL. Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica. 2022;1(1):20224. https://doi.org/10.58763/rc20224

21. Zhang Y, Sun T, M, Wang X, Xie Q, Zhang C, Wang Y, et al. Distribution of mercury and methylmercury in river water and sediment of typical manganese mining area. Journal of environmental sciences. 2021;119:11-22. https://doi.org/10.1016/j.jes.2021.12.011

22. De Moura Meneses H, Oliveira-Da-Costa M, Basta P, Morais C, Pereira R, De Souza S, et al. Mercury Contamination: A Growing Threat to Riverine and Urban Communities in the Brazilian Amazon. International Journal of Environmental Research and Public Health. 2022;19. https://doi.org/10.3390/ijerph19052816

23. Du H, Guo P, Wang T, M, Wang D. Significant bioaccumulation and biotransformation of methyl mercury by organisms in rice paddy ecosystems: A potential health risk to humans. Environmental pollution. 2021;273:116431. https://doi.org/10.1016/j.envpol.2021.116431

24. Nyholt K, Jardine T, Villamarín F, Jacobi C, Hawes J, Campos-Silva J, et al. High rates of mercury biomagnification in fish from Amazonian floodplain-lake food webs. The Science of the total environment. 2022:155161. https://doi.org/10.1016/j.scitotenv.2022.155161

25. Eissa F, Younes A. Fish contamination: Analysis of the EU RASFF notifications over the last 23 years. Food Control. 2024. https://doi.org/10.1016/j.foodcont.2024.110404

26. Yang T, Xu Z, Liu W, Xu B, Deng Y. Oxidative stress accelerates synaptic glutamate dyshomeostasis and NMDARs disorder during methylmercury‐induced neuronal apoptosis in rat cerebral cortex. Environmental Toxicology. 2020;35:683-96. https://doi.org/10.1002/tox.22904

27. Liao Y, Peng S, He L, Wang Y, Li Y, Wang Y, et al. Methylmercury cytotoxicity and possible mechanisms in human trophoblastic HTR-8/SVneo cells. Ecotoxicology and Environmental Safety. 2021;207:111520. https://doi.org/10.1016/j.ecoenv.2020.111520

28. Sakamoto M, Marumoto M, Haraguchi K, Toyama T, Saito Y, Balogh S, et al. Assessing the role of selenium in Minamata disease through reanalysis of historical samples. Environment International. 2024;195:109242. https://doi.org/10.1016/j.envint.2024.109242

29. Borges Machín AY, González Bravo YL. Educación comunitaria para un envejecimiento activo: experiencia en construcción desde el autodesarrollo. Región Científica. 2022;1(1):202212. https://doi.org/10.58763/rc202213

30. Chan P, Kwok K, Chan M, Li A, Chan I, Fok T, et al. Prenatal methylmercury exposure is associated with decreased heart rate variability in children. Environmental Research. 2021:111744. https://doi.org/10.1016/j.envres.2021.111744

31. Go S, Kurita H, Hatano M, Matsumoto K, Nogawa H, Fujimura M, et al. DNA methyltransferase- and histone deacetylase-mediated epigenetic alterations induced by low-level methylmercury exposure disrupt neuronal development. Archives of Toxicology. 2021;95:1227-39. https://doi.org/10.1007/s00204-021-02984-7

32. Escalante E, Semenova Y, Peana M, Bjørklund G. The Impact of Mercury from Dental Amalgams on Pregnancy and Childhood: A Health and Risk Assessment Evaluation. Current Medicinal Chemistry. 2025. https://doi.org/10.2174/0109298673334663250101101006

33. Vázquez-Vidal V, Martínez-Prats G. El desarrollo regional y su impacto en la sociedad mexicana. Región Científica. 2023;2(1):202336. https://doi.org/10.58763/rc202336

34. Sanabria Martínez MJ. Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica. 2022;1(1):20222. https://doi.org/10.58763/rc20222

35. Hoyos Chavarro YA, Melo Zamudio JC, Sánchez Castillo V. Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica. 2022;1(1):20228. https://doi.org/10.58763/rc20228

36. Bjorklund G, Peana M, Dadar M, Chirumbolo S, Aaseth J, Martins N. Mercury-induced autoimmunity: Drifting from micro to macro concerns on autoimmune disorders. Clinical Immunology. 2020:108352. https://doi.org/10.1016/j.clim.2020.108352

37. Ibañez A, Mills W, Bustamante P, Morales L, Torres D, Astek B, et al. Deleterious effects of mercury contamination on immunocompetence, liver function and egg volume in an antarctic seabird. Chemosphere. 2023:140630. https://doi.org/10.1016/j.chemosphere.2023.140630

38. Krata A, Vassileva E. Simultaneous speciation analysis of mercury in marine origin samples by high performance liquid chromatography and species-specific isotope dilution inductively coupled plasma mass spectrometry. Talanta. 2020;217:121113. https://doi.org/10.1016/j.talanta.2020.121113

39. Liu Y, Guo X, Ju J, Gong H, Wang H, Chen L, et al. Determinations of methylmercury and mercury methylation/demethylation rate constants in environmental samples using isotope dilution/tracing methods by automatic ethylation-purge and trap-GC-ICP-MS. Analytica Chimica Acta. 2024;1323:343077. https://doi.org/10.1016/j.aca.2024.343077

40. Kulomäki S, Lahtinen E, Perämäki S, Väisänen A. Preconcentration and speciation analysis of mercury: 3D printed metal scavenger-based solid-phase extraction followed by analysis with inductively coupled plasma mass spectrometry. Talanta. 2021;240:123163. https://doi.org/10.1016/j.talanta.2021.123163

41. Sánchez-Castillo V, Gómez-Cano C, Alape-Chaguala R. Dynamics of institutional rural social networks and their contribution to social capital in a collective of THEOBROMA CACAO L. PRODUCERS. FACE: Revista De La Facultad De Ciencias Económicas Y Empresariales. 2023;23(1). https://doi.org/10.24054/face.v23i1.2475

42. Sánchez-Castillo V, García-Rojas R, Gómez-Cano C. Redes Sociales Rurales y Capital social: El caso de los paneleros de Bellavista. Universidad y Sociedad. 2023;14(5):383-93. https://rus.ucf.edu.cu/index.php/rus/article/view/3991

43. Higuera Carrillo EL. Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica. 2022;1(1):20224. https://doi.org/10.58763/rc20224

44. Lim J, Kim T, Woo M. Trends in sensor development toward next-generation point-of-care testing for mercury. Biosensors & Bioelectronics. 2021;183:113228. https://doi.org/10.1016/j.bios.2021.113228

45. Bank M. The mercury science-policy interface: History, evolution and progress of the Minamata Convention. The Science of the Total Environment. 2020;722:137832. https://doi.org/10.1016/j.scitotenv.2020.137832

46. Guzmán DL, Gómez-Cano C, Sánchez-Castillo V. Construcción del Estado a partir de la participación Ciudadana. Revista Academia & Derecho. 2022;14(25). https://doi.org/10.18041/2215-8944/academia.25.10601

47. Pérez-Guedes N, Arufe-Padrón A. Perspectivas de transición energética en América Latina en el escenario pospandémico. Región Científica. 2023;2(1):202334. https://doi.org/10.58763/rc202334

48. Muñoz Bonilla HA, Menassa Garrido IS, Rojas Coronado L, Espinosa Rodríguez MA. La innovación en el sector servicios y su relación compleja con la supervivencia empresarial. Región Científica. 2024;3(1):2024214. https://doi.org/10.58763/rc2024214

49. Ramírez M, Ruiz C, Gomringer R, Pillaca M, Thomas E, Stewart P, et al. Mercury in soils impacted by alluvial gold mining in the Peruvian Amazon. Journal of Environmental Management. 2021;288:112364. https://doi.org/10.1016/j.jenvman.2021.112364

50. Azizi M, Faz Á, Zornoza R, Martínez-Martínez S, Acosta J. Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal(loid)s and Rare Earth Elements. Plants. 2023;12. https://doi.org/10.3390/plants12061219

51. Yin X, Wang L, Liang X, Zhang L, Zhao J, Gu B. Contrary effects of phytoplankton Chlorella vulgaris and its exudates on mercury methylation by iron- and sulfate-reducing bacteria. Journal of Hazardous Materials. 2022;433:128835. https://doi.org/10.2139/ssrn.4014071

52. Mogrovejo Andrade JM. Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica. 2022;1(1):202211. https://doi.org/10.58763/rc202211

53. Prescott G, Baird M, Geenen S, Nkuba B, Phelps J, Webb E. Formalizing artisanal and small-scale gold mining: A grand challenge of the Minamata Convention. One Earth. 2022. https://doi.org/10.1016/j.oneear.2022.02.005.

Downloads

Published

2025-04-27

How to Cite

1.
Chaves Cano AM. Impact of Mercury Poisoning in Rivers: A Bibliometric Review of Human Health Effects. Environmental Research and Ecotoxicity [Internet]. 2025 Apr. 27 [cited 2025 Aug. 28];4:172. Available from: https://ere.ageditor.ar/index.php/ere/article/view/172