Impact of Mercury Poisoning in Rivers: A Bibliometric Review of Human Health Effects
DOI:
https://doi.org/10.56294/ere2025172Keywords:
mercury, rivers, human health, bibliometrics, methylmercury, pollutionAbstract
Mercury poisoning in rivers poses a serious threat to aquatic ecosystems and human health, particularly for communities reliant on these resources. This article presents a bibliometric review of scientific literature (2015–2025) to analyze the impact of mercury in rivers and its health effects, identifying research trends and gaps. The methodology involved a Scopus search using key terms such as "mercury poisoning," "rivers," and "human health," selecting 1,194 articles analyzed through bibliometric indicators and content analysis with Bibliometrix. Results revealed a progressive increase in publications, peaking in 2023–2024, reflecting growing global concern. Four main thematic areas were identified: (1) toxicity mechanisms and bioaccumulation of methylmercury, (2) health effects, particularly in vulnerable groups, (3) risk assessment and monitoring methodologies, and (4) mitigation and remediation strategies. Key findings highlighted disparities in artisanal mining regions, advances in detection technologies, and challenges in implementing policies like the Minamata Convention. The study concludes that while robust evidence exists on mercury risks, gaps persist in harmonizing methods and applying sustainable solutions.
References
1. Khan E, Abbas Z. A scoping review of sources of mercury and its health effects among Pakistan’s most vulnerable population. Reviews on Environmental Health. 2020;36:39-45. https://doi.org/10.1515/reveh-2019-0099
2. González Vallejo R. La transversalidad del medioambiente: facetas y conceptos teóricos. Región Científica. 2023;2(2):202393. https://doi.org/10.58763/rc202393
3. Zhao W, Gan R, Xian B, Wu T, Wu G, Huang S, et al. Overview of Methylation and Demethylation Mechanisms and Influencing Factors of Mercury in Water. Toxics. 2024;12. https://doi.org/10.3390/toxics12100715
4. Teng D, Mao K, Ali W, Xu G, Huang G, Niazi N, et al. Describing the toxicity and sources and the remediation technologies for mercury-contaminated soil. RSC Advances. 2020;10:23221-32. https://doi.org/10.1039/d0ra01507e
5. Valencia-Celis AU, Patiño GR, Sánchez-Castillo V. Environmental Knowledge Management Proposals in Education Systems. Bibliotecas. Anales de investigación. 2023;19(2). https://dialnet.unirioja.es/servlet/articulo?codigo=9027955
6. Gutierrez-Mosquera H, Marrugo-Negrete J, Díez S, Morales-Mira G, Montoya-Jaramillo L, Jonathan M. Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: Focus on human health. Journal of hazardous materials. 2020;404 Pt A:124080. https://doi.org/10.1016/J.JHAZMAT.2020.124080
7. Jeong H, Ali W, Zinck P, Souissi S, Lee J. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. The Science of the total environment. 2024:173574. https://doi.org/10.1016/j.scitotenv.2024.173574
8. Leal-Nazaré C, Arrifano G, Lopes-Araújo A, Santos-Sacramento L, Barthelemy J, Soares-Silva I, et al. Methylmercury neurotoxicity: Beyond the neurocentric view. The Science of the total environment. 2024:170939. https://doi.org/10.1016/j.scitotenv.2024.170939
9. Da Silva D, Bittencourt L, Baia-Da-Silva D, Chemelo V, Eiró-Quirino L, Nascimento P, et al. Methylmercury Causes Neurodegeneration and Downregulation of Myelin Basic Protein in the Spinal Cord of Offspring Rats after Maternal Exposure. International Journal of Molecular Sciences. 2022;23. https://doi.org/10.3390/ijms23073777
10. Eiró L, Ferreira M, Bittencourt L, Aragão W, De Souza M, Silva M, et al. Chronic methylmercury exposure causes spinal cord impairment: proteomic modulation and oxidative stress. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association. 2020:111772. https://doi.org/10.1016/j.fct.2020.111772
11. Martoredjo I, Santos L, Vilhena J, Rodrigues A, De Almeida A, Passos C, et al. Trends in Mercury Contamination Distribution among Human and Animal Populations in the Amazon Region. Toxics. 2024;12. https://doi.org/10.3390/toxics12030204
12. Sánchez-Castillo V, Gómez-Cano CA, Pérez-Gamboa AJ. La Economía Azul en el contexto de los objetivos del desarrollo sostenible: una revisión mixta e integrada de la literatura en la base de datos Scopus. AiBi Revista De Investigación, Administración E Ingeniería. 2024;12(2):206-21. https://doi.org/10.15649/2346030X.4028
13. Pérez Gamboa AJ, Sánchez Castillo V. Derecho Educacional y desarrollo sostenible: un análisis de su relación y líneas de desarrollo futuro. Revista Academia & Derecho. 2024;17(28). https://doi.org/10.18041/2215-8944/academia.28.11839
14. Gómez Cano CA, Pérez Gamboa A, Sánchez Castillo V. Análisis de la producción científica entorno a ODS 11: Ciudades y Comunidades Sostenibles. Mundo FESC. 2024;14(28):118-36. https://doi.org/10.61799/2216-0388.1585
15. Sánchez Castillo V, Pérez Gamboa AJ, Gómez Cano CA. Trends and evolution of Scientometric and Bibliometric research in the SCOPUS database. Bibliotecas. Anales de investigación. 2024;20(1). http://revistas.bnjm.sld.cu/index.php/BAI/article/view/834
16. Ledesma F, Malave-González BE. Patrones de comunicación científica sobre E-commerce: un estudio bibliométrico en la base de datos Scopus. Región Científica. 2022;1(1):202214. https://doi.org/10.58763/rc202214
17. Gómez-Cano C, Sánchez-Castillo V, Clavijo-Gallego TA. Mapping the Landscape of Netnographic Research: A Bibliometric Study of Social Interactions and Digital Culture. Data and Metadata. 2023;2(25). https://doi.org/10.56294/dm202325
18. Gómez-Cano C, Sánchez-Castillo V. Systematic review on Augmented Reality in health education. Gamification and Augmented Reality. 2023;1:28. https://doi.org/10.56294/gr202328
19. Gómez Cano CA, Sánchez Castillo V, Pérez Gamboa A. El turismo como dinamizador del desarrollo económico: una revisión mixta de la producción científica. Dictamen Libre. 2024;35. https://dialnet.unirioja.es/servlet/articulo?codigo=9763789
20. Higuera Carrillo EL. Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica. 2022;1(1):20224. https://doi.org/10.58763/rc20224
21. Zhang Y, Sun T, M, Wang X, Xie Q, Zhang C, Wang Y, et al. Distribution of mercury and methylmercury in river water and sediment of typical manganese mining area. Journal of environmental sciences. 2021;119:11-22. https://doi.org/10.1016/j.jes.2021.12.011
22. De Moura Meneses H, Oliveira-Da-Costa M, Basta P, Morais C, Pereira R, De Souza S, et al. Mercury Contamination: A Growing Threat to Riverine and Urban Communities in the Brazilian Amazon. International Journal of Environmental Research and Public Health. 2022;19. https://doi.org/10.3390/ijerph19052816
23. Du H, Guo P, Wang T, M, Wang D. Significant bioaccumulation and biotransformation of methyl mercury by organisms in rice paddy ecosystems: A potential health risk to humans. Environmental pollution. 2021;273:116431. https://doi.org/10.1016/j.envpol.2021.116431
24. Nyholt K, Jardine T, Villamarín F, Jacobi C, Hawes J, Campos-Silva J, et al. High rates of mercury biomagnification in fish from Amazonian floodplain-lake food webs. The Science of the total environment. 2022:155161. https://doi.org/10.1016/j.scitotenv.2022.155161
25. Eissa F, Younes A. Fish contamination: Analysis of the EU RASFF notifications over the last 23 years. Food Control. 2024. https://doi.org/10.1016/j.foodcont.2024.110404
26. Yang T, Xu Z, Liu W, Xu B, Deng Y. Oxidative stress accelerates synaptic glutamate dyshomeostasis and NMDARs disorder during methylmercury‐induced neuronal apoptosis in rat cerebral cortex. Environmental Toxicology. 2020;35:683-96. https://doi.org/10.1002/tox.22904
27. Liao Y, Peng S, He L, Wang Y, Li Y, Wang Y, et al. Methylmercury cytotoxicity and possible mechanisms in human trophoblastic HTR-8/SVneo cells. Ecotoxicology and Environmental Safety. 2021;207:111520. https://doi.org/10.1016/j.ecoenv.2020.111520
28. Sakamoto M, Marumoto M, Haraguchi K, Toyama T, Saito Y, Balogh S, et al. Assessing the role of selenium in Minamata disease through reanalysis of historical samples. Environment International. 2024;195:109242. https://doi.org/10.1016/j.envint.2024.109242
29. Borges Machín AY, González Bravo YL. Educación comunitaria para un envejecimiento activo: experiencia en construcción desde el autodesarrollo. Región Científica. 2022;1(1):202212. https://doi.org/10.58763/rc202213
30. Chan P, Kwok K, Chan M, Li A, Chan I, Fok T, et al. Prenatal methylmercury exposure is associated with decreased heart rate variability in children. Environmental Research. 2021:111744. https://doi.org/10.1016/j.envres.2021.111744
31. Go S, Kurita H, Hatano M, Matsumoto K, Nogawa H, Fujimura M, et al. DNA methyltransferase- and histone deacetylase-mediated epigenetic alterations induced by low-level methylmercury exposure disrupt neuronal development. Archives of Toxicology. 2021;95:1227-39. https://doi.org/10.1007/s00204-021-02984-7
32. Escalante E, Semenova Y, Peana M, Bjørklund G. The Impact of Mercury from Dental Amalgams on Pregnancy and Childhood: A Health and Risk Assessment Evaluation. Current Medicinal Chemistry. 2025. https://doi.org/10.2174/0109298673334663250101101006
33. Vázquez-Vidal V, Martínez-Prats G. El desarrollo regional y su impacto en la sociedad mexicana. Región Científica. 2023;2(1):202336. https://doi.org/10.58763/rc202336
34. Sanabria Martínez MJ. Construir nuevos espacios sostenibles respetando la diversidad cultural desde el nivel local. Región Científica. 2022;1(1):20222. https://doi.org/10.58763/rc20222
35. Hoyos Chavarro YA, Melo Zamudio JC, Sánchez Castillo V. Sistematización de la experiencia de circuito corto de comercialización estudio de caso Tibasosa, Boyacá. Región Científica. 2022;1(1):20228. https://doi.org/10.58763/rc20228
36. Bjorklund G, Peana M, Dadar M, Chirumbolo S, Aaseth J, Martins N. Mercury-induced autoimmunity: Drifting from micro to macro concerns on autoimmune disorders. Clinical Immunology. 2020:108352. https://doi.org/10.1016/j.clim.2020.108352
37. Ibañez A, Mills W, Bustamante P, Morales L, Torres D, Astek B, et al. Deleterious effects of mercury contamination on immunocompetence, liver function and egg volume in an antarctic seabird. Chemosphere. 2023:140630. https://doi.org/10.1016/j.chemosphere.2023.140630
38. Krata A, Vassileva E. Simultaneous speciation analysis of mercury in marine origin samples by high performance liquid chromatography and species-specific isotope dilution inductively coupled plasma mass spectrometry. Talanta. 2020;217:121113. https://doi.org/10.1016/j.talanta.2020.121113
39. Liu Y, Guo X, Ju J, Gong H, Wang H, Chen L, et al. Determinations of methylmercury and mercury methylation/demethylation rate constants in environmental samples using isotope dilution/tracing methods by automatic ethylation-purge and trap-GC-ICP-MS. Analytica Chimica Acta. 2024;1323:343077. https://doi.org/10.1016/j.aca.2024.343077
40. Kulomäki S, Lahtinen E, Perämäki S, Väisänen A. Preconcentration and speciation analysis of mercury: 3D printed metal scavenger-based solid-phase extraction followed by analysis with inductively coupled plasma mass spectrometry. Talanta. 2021;240:123163. https://doi.org/10.1016/j.talanta.2021.123163
41. Sánchez-Castillo V, Gómez-Cano C, Alape-Chaguala R. Dynamics of institutional rural social networks and their contribution to social capital in a collective of THEOBROMA CACAO L. PRODUCERS. FACE: Revista De La Facultad De Ciencias Económicas Y Empresariales. 2023;23(1). https://doi.org/10.24054/face.v23i1.2475
42. Sánchez-Castillo V, García-Rojas R, Gómez-Cano C. Redes Sociales Rurales y Capital social: El caso de los paneleros de Bellavista. Universidad y Sociedad. 2023;14(5):383-93. https://rus.ucf.edu.cu/index.php/rus/article/view/3991
43. Higuera Carrillo EL. Aspectos clave en agroproyectos con enfoque comercial: Una aproximación desde las concepciones epistemológicas sobre el problema rural agrario en Colombia. Región Científica. 2022;1(1):20224. https://doi.org/10.58763/rc20224
44. Lim J, Kim T, Woo M. Trends in sensor development toward next-generation point-of-care testing for mercury. Biosensors & Bioelectronics. 2021;183:113228. https://doi.org/10.1016/j.bios.2021.113228
45. Bank M. The mercury science-policy interface: History, evolution and progress of the Minamata Convention. The Science of the Total Environment. 2020;722:137832. https://doi.org/10.1016/j.scitotenv.2020.137832
46. Guzmán DL, Gómez-Cano C, Sánchez-Castillo V. Construcción del Estado a partir de la participación Ciudadana. Revista Academia & Derecho. 2022;14(25). https://doi.org/10.18041/2215-8944/academia.25.10601
47. Pérez-Guedes N, Arufe-Padrón A. Perspectivas de transición energética en América Latina en el escenario pospandémico. Región Científica. 2023;2(1):202334. https://doi.org/10.58763/rc202334
48. Muñoz Bonilla HA, Menassa Garrido IS, Rojas Coronado L, Espinosa Rodríguez MA. La innovación en el sector servicios y su relación compleja con la supervivencia empresarial. Región Científica. 2024;3(1):2024214. https://doi.org/10.58763/rc2024214
49. Ramírez M, Ruiz C, Gomringer R, Pillaca M, Thomas E, Stewart P, et al. Mercury in soils impacted by alluvial gold mining in the Peruvian Amazon. Journal of Environmental Management. 2021;288:112364. https://doi.org/10.1016/j.jenvman.2021.112364
50. Azizi M, Faz Á, Zornoza R, Martínez-Martínez S, Acosta J. Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal(loid)s and Rare Earth Elements. Plants. 2023;12. https://doi.org/10.3390/plants12061219
51. Yin X, Wang L, Liang X, Zhang L, Zhao J, Gu B. Contrary effects of phytoplankton Chlorella vulgaris and its exudates on mercury methylation by iron- and sulfate-reducing bacteria. Journal of Hazardous Materials. 2022;433:128835. https://doi.org/10.2139/ssrn.4014071
52. Mogrovejo Andrade JM. Estrategias resilientes y mecanismos de las organizaciones para mitigar los efectos ocasionados por la pandemia a nivel internacional. Región Científica. 2022;1(1):202211. https://doi.org/10.58763/rc202211
53. Prescott G, Baird M, Geenen S, Nkuba B, Phelps J, Webb E. Formalizing artisanal and small-scale gold mining: A grand challenge of the Minamata Convention. One Earth. 2022. https://doi.org/10.1016/j.oneear.2022.02.005.
Published
Issue
Section
License
Copyright (c) 2025 Ana María Chaves Cano (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.